If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-10.8X+10.8=0
a = 1; b = -10.8; c = +10.8;
Δ = b2-4ac
Δ = -10.82-4·1·10.8
Δ = 73.44
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10.8)-\sqrt{73.44}}{2*1}=\frac{10.8-\sqrt{73.44}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10.8)+\sqrt{73.44}}{2*1}=\frac{10.8+\sqrt{73.44}}{2} $
| 2x-10=225 | | 59=1/2(x-21) | | 4/3x=2/5x-1 | | 18=11v-2v | | 2y-5=y+50 | | 2(3x+11)=0 | | -3+-2j=-1 | | 2x-7=-1x= | | 18a=-342 | | 5x^2-8x)+(3x+10x^2)=0 | | X2+3x+28=0 | | 266=19j | | 3x(x+2)^3=0 | | Y=-30x+240 | | 9x+53=170 | | X2+3x+240=0 | | 4x+80=128 | | (9x+12)+78=180 | | x2+3x+280=0 | | -x2+3x+240=0 | | 10v=45+5v | | 8p+12-5p=24 | | (4x-15)=(5x+1) | | 4a+5.6=-2.8 | | 2/3y=1.6 | | -2(5y+10)=30 | | (1x+2)=(40) | | (3x-2)=(76) | | (3x+1)=(85) | | 5x-4+2x=4x+5 | | 5x-21=-2x-14 | | 15+1/3n=8 |